cator over sulfuric acid the compound melted at $276-278^{\circ}$ (uncor.).

Anal. Calcd. for $C_{22}H_{18}S_3O_8N_4$: N, 9.96; S, 17.09. Found: N, 9.54; S, 16.85.

CHEMO-MEDICAL RESEARCH INSTITUTE

GEORGETOWN UNIVERSITY WASHINGTON, D. C. RECEIVED JUNE 25, 1942

Some Diamino Peptides

Dimethylamine reacted with p-nitro- β -bromopropionanilide to form p-nitro- β -dimethylaminopropionanilide, m. p. of the hydrochloride, 200–201°. A portion of this was transformed into the methochloride and both substances were reduced catalytically in alcohol containing hydrogen chloride to give, respectively, p-amino- β -dimethylaminopropionanilide dihydrochloride (I), colorless felted needles, m. p. 218–219°, and p-amino- β -dimethylaminopropionanilide methochloride hydrochloride (II), hygroscopic crystals, m. p. 211–212°.

N,N-Diethylethylenediamine,¹ prepared by the reduction (sodium and alcohol) of diethylglycine nitrile, reacted with *p*-nitrobenzoyl chloride, forming β -[*p*-nitrobenzoylamidoethyl]-diethylamine hydrochloride, colorless needles melting at 164–5°. This substance and its ethochloride were reduced catalytically in alcoholic hydrogen chloride to β -[*p*-aminobenzoylamidoethyl]-diethylamine dihydrochloride (III), m. p. 176.5–178°, and to β -[*p*-aminobenzoylamidoethyl]-triethylammonium chloride, hydrochloride (IV), which forms stubby prisms melting at 228°.

Reduction of β -dimethylaminopropionitrile gave γ dimethylaminopropylamine, m. p. of the dihydrochloride, 182–184° The base reacted with *p*-nitrobenzoyl chloride

		Analyses, %						
		Cal	ed.	Found				
No.	Formula	C	н	С	н			
I	$C_{11}H_{19}ON_{3}Cl_{2}$	47.12	6.84	47.38	6.61			
II	$C_{12}H_{21}ON_{3}Cl_{2}$	48.96	7.20	48.67	7.27			
III	C ₁₃ H ₂₃ ON ₃ Cl ₂	50.63	7.52	50.67	7.80			
IV	$C_{15}H_{27}ON_8Cl_2$	53.56	8.13	53.45	8.04			
V	$C_{12}H_{21}ON_8Cl_2$	48.96	7.20	49.05	7.51			
VI	$C_{15}H_{27}O_2N_3Cl_2$	51.12	7.73	51.27	7.75			
VII	C15H26O2N2Cl2	53.39	7.77	53.02	7.62			

BURROUGHS WELLCOME & CO., U. S. A. RICHARD BALTZLY EXPERIMENTAL RESEARCH LABORATORIES WALTER S. IDE TUCKAHOE, NEW YORK JOHANNES S. BUCK RECEIVED MAY 18, 1942

Some New Quaternary Salts

Methylaniline and octadecyl iodide reacted to yield methyloctadecylaniline, a yellow oil, b. p. (3 mm.), 234°. This was treated in benzene solution with methyl iodide forming octadecylphenyldimethylammonium iodide which crystallized in leaflets from ethyl acetate.

Cyclohexylethylamine (prepared from cyclohexylacetic acid by the sequence: acid \rightarrow acid chloride \rightarrow amide \rightarrow nitrile \rightarrow amine) was methylated by the Clarke-Eschweiler method. The resulting tertiary amine reacted with benzyl chloride in ether to give cyclohexylethylbenzyldimethylammonium chloride.

Benzyl- β -bromoethyldimethylammonium bromide was prepared from benzyldimethylamine and ethylene bromide.

Triethylamine and α -menaphthyl chloride (α -naphthylmethyl chloride) yielded α -menaphthyltriethylammonium chloride. Data on these substances are presented in the subjoined table.

			Calcd.			07	
					Fou	Found	
Formula	М. р., °С.	Composition	С	н	с	H	
$(n-C_{18}H_{37})C_{6}H_{5}NMe_{2}I$	93-94	$C_{26}H_{46}NI$	62.25	9.65	62.12	9. 6 9	
$(C_6H_{11}CH_2CH_2)(C_6H_5CH_2)NMe_2Cl$	206 dec.	$C_{17}H_{28}NC1$	72.44	10.02	72.15	10.16	
$(C_6H_5CH_2)(BrCH_2CH_2)NMe_2Br$	174	$C_{11}H_{17}NBr_2$	40.87	5.31	40.91	5.61	
$(\alpha - C_{10}H_7CH_2)NEt_3Cl$	197 dec.	$C_{17}H_{24}NCI$	73 .49	8.71	73.41	8.62	

to form γ -[*p*-nitrobenzoylamidopropyl]-dimethylamine hydrochloride, m. p. 190–192°. This was reduced catalytically in alcoholic hydrogen chloride solution to γ -[*p*aminobenzoylamidopropyl]-dimethylamine dihydrochloride (V), m. p. 184-185°.

Reduction of the *p*-nitrophenylurethan of β -hydroxyethyltriethylammonium chloride yielded β -[*p*-aminophenylcarbamatoethyl]-triethylammonium chloride, hydrochloride (VI), which forms irregular prisms melting at 138– 139°.

By the reduction of β -[*p*-nitrobenzoyloxyethyl]-triethylammonium chloride, there was obtained β -[*p*-aminobenzoyloxyethyl]-triethylammonium chloride, hydrochloride (VII), m. p. 214-215°. This has been reported² previously, but the synthesis used was not free from ambiguity.

The salts described here were crystallized from absolute alcohol or from alcohol-ethyl acetate mixtures. The analytical data are in the table. BURROUGHS WELLCOME & CO., U. S. A.

EXPERIMENTAL RESEARCH LABORATORIES

TUCKAHOE, NEW YORK

RICHARD BALTZLY CLAYTON W. FERRY

JOHANNES S. BUCK

RECEIVED MAY 18, 1942

Some Mono- and Disubstituted Guanidines

The guanidines here described were all prepared by conventional methods. The **S**-methyl-isothiourea sulfate method (generally applicable with amines of moderate strength and water solubility) was used to prepare the five following: β -[N-morpholinoethyl]-guanidine sulfate (from aminoethylmorpholine), β , β -diethoxyethylguanidine sulfate (from amino acetal), N,N-dicyclohexylguanidine sulfate (from dicyclohexylamine), N-benzyl-N-methylguanidine sulfate (from benzylmethylamine) and δ -phenoxybutylguanidine sulfate (from δ -phenoxybutylamine prepared by reduction of γ -phenoxybutyronitrile). In all these cases the salt was isolated by evaporation of the reaction mixture

⁽¹⁾ Ristenpart, Ber., 29, 2526 (1896).

⁽²⁾ Einhorn and Uhlfelder, Ann., 371, 138 (1909).